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ABSTRACT

A computerized multistage failure process simulation procedure is

used to evaluate the risk in a solar electric space mission. The procedure

uses currently available thrust-subsystem reliability data and performs

approximate simulations of the thrust subsystem burn operation, the sys-

tem failure processes, and the retargeting operations. The method is

applied to assess the risks in carrying out a 1980 rendezvous mission to the

comet Encke. Analysis of the results and evaluation of the effects of

various risk factors on the mission show that system component failure

rates are the limiting factors in attaining a high mission reliability. It is

also shown that a well-designed trajectory and system operation mode can

be used effectively to partially compensate for unreliable thruster

performance.
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I. INTRODUCTION

One unique feature of a low-thrust system is the ability to accomplish

the primary mission and/or science objectives even if one or more of its

thrusters fail, so long as the solar panel power output (energy supply)

remains available. This flexibility can greatly increase the probability of a

mission's success, 1 if a complete scenario of alternate thrust profiles is

included as part of the mission operations strategy. This avoids excessive

reliance on redundant hardware or expensive improvements in hardware

reliability and longevity.

Previous reliability studies, such as Refs. 1 and 2, do not consider

the effects of these alternate maneuver possibilities. Further refinements

and realistic risk assessment require development of analysis techniques to

cope with this additional, fundamentally complex factor. Within this general

context, we seek a methodology which evaluates risk with at least first order

correctness and maximum practical utility.

A discrete, multistage process simulation procedure is used. Essen-

tially, continuous and infinite processes are modeled as discrete and finite

sequences. The discrete simulation approach, with finite stochastic

sequences, is especially attractive for low-thrust missions since the actual

flight mode will probably be operationally discrete anyway. Various thrust

subsystem parameters, hardware reliability factors, and mission opera-

tion modes, which affect the process simulation and thus the assessed value

of the risks, are analyzed. The results of such analyses provide guidelines

for rational thrust-subsystem design and can be used to identify the key risk

factors.

1 The simple mission success criteria used here assume a satisfactory
science return if a specified set of state conditions such as rendezvous,
flyby, etc. are achieved within a desired time period.

JPL Technical Memorandum 33-593 1



II. MODEL OVERVIEW

The performance of a desired mission is tied to the operation of a

system. To assess the risk in a mission, one must understand the proposed

mission profile, the operational system, and its operational processes.

In this study, the system is a solar electric (SEP) spacecraft with

attention focused on the thrust subsystem. Generally, a thrust subsystem

comprises several units of power conditioners (PC) and thrusters intercon-

nected by a switching mechanism.

In a SEP mission, since the thrust power varies with time, the number

of thrusters needed to be burning at various phases of the mission must vary

according to the power level. Therefore, operation of this system requires

not only the steering of the spacecraft along the desired path (vector control),

but also the timely switching of thrusters (thruster burn control) to match

the power.

For the purpose of the risk analysis, the state of the operational sys-

tem at time t, S(t), is conveniently defined in the following way:

U 1 T

X U 2 T

s(t) = , U = T = (1)

UN TN

where U and T are column vectors with N components, used to represent

the status and elapsed burn time of the N given thrusters. Components of

U are integers (2), (1) or (0) depending on whether the thruster is operating,

idling, or failed, and X represents the spacecraft states (X, Y, Z, VX ,

Vy, VZ). Propagation of the operational system state S from time t to

t + At is governed by the operational control policies, namely a path control

policy (such as payload optimizing control, minimum mission time control,

etc. ) and a burn control policy. A unique, well-defined control policy must

be able to transfer the state in a unique manner with 100 percent certainty.

But, as in any real dynamic system, the state of the system is under the

influence of uncontrollable internal and external random forces, and the

JPL Technical Memorandum 33-5932



actual behavior of the controls forces the state to exhibit deviations. Thus,

the state transitions from Si(t) to Sj(t+At) can be described only in probabil-

istic terms. The sole source of random control concerned with here is the

thruster failures, and this failure statistic is assumed to be given. Other

small random forces such as process noise (noise in the thrust vector) are

considered as insignificant for this risk analysis. Since a thruster failure

destroys a large fraction of the thrust subsystem capability, the stochastic

failure effects predominate in this operational system. This operational

process is complex because (1) it is continuous in time, (2) the process con-

trol is time-dependent (both in deterministic control and random failure),

(3) the state S(t) occupies a continuous space and, above all, (4) the random

effects can be violent. This complexity indicates that an analytical approach,

such as setting up differential equations for the deviations (Ref. 3), cannot

be used, and this leads to a simulation procedure. Monte Carlo simulation

could be used if one were to ignore the trajectory control effects on the mis-

sion and simulate only the burn control processes for a particular thrust

program (Refs. 1 and 2). If one includes the trajectory aspect in this type

of simulation in a straightforward manner, the trajectory computation cost

becomes prohibitive.

The procedure used here is that of discretized simulation. Time is

divided into stages, and X and T are conceptually discretized at each stage

time, by way of an approximate representation, as will be discussed in detail

later. Since the U component of the system state S is denumerable, the state

at each stage time can be counted. This procedure reduces the process to

a multistage diverging network problem. For the risk analysis, the proba-

bility tree corresponding to such processes can be constructed. The propa-

gation along all the successful paths can be computer simulated and the

probability of success obtained (see Fig. 1). Nonetheless, since the tree can

branch out very quickly as the stage progresses forward, a compromise

must be made between the accuracy and the volume of computation.

III. RISK FACTORS

Various risk factors included in this risk assessment procedure are

shown in Fig. 2. A detailed description and analysis of each of these risk

factors are presented in the following sections.

JPL Technical Memorandum 33-593 3



A. Operational Mode Risk Factors

The impact of a failure on the mission goal depends on the time and

type of failures (failure modes). Fatal failure modes can be identified by

systematic trajectory error analysis. The probability of occurrence of such

failure events depends not only on the nature of the hardware but also on the

strategy used in operating the available thrusters (burn policy). In planning

a mission, careful trajectory design can ease the impact of the most probable

failures on the mission goal. At the same time, a well-planned burn policy

can considerably reduce the probability of fatal failure events.

1. Trajectory control policy and trajectory error analysis. Mis-

sion goals can be attained in more than one way for a given mission. This

is particularly true of a continuously propelled, solar-electric mission.

Trajectory error analysis consists of identifying nonfatal (admissible)

failure modes and providing alternate controls. In order to carry out such

an analysis, a clear definition of mission success must be given. Once this

is done, the impact of a failure can be evaluated and decisions can be made

regarding the subsequent system control. In the event that the failure is

severe enough to require a path modification, a path control policy is needed

to modify the path to satisfy the mission goal in a unique manner. This

policy will depend on the type of mission, but generally it can be as follows.

The policy of control modification will be first to attain the final spacecraft

state requirement (relative to the target) at the time closest to the nominal

time. When this is impossible, it may resort to a secondary policy which

will relax the final probe state constraints.

2. Thruster burn control policy. At every decision point of the

mission operation process, the thrust-subsystem state [ U(t), 7T (t) ] is given.

Be it perfect or degraded by failures, the desired thrust program (that is,

the varying power levels) must be matched according to a burn control

policy. This policy is used to control the choice of thrusters, the switching

time of the thrusters, and the duration of the thruster burn allocations at

every phase of the mission.

Elaboration on such a policy may be made by closely following the

result of the trajectory error analysis to enhance mission success. Simple

models of the burn policy can be as follows. The number of burning

JPL Technical Memorandum 33-5934



thrusters should be the minimum possible, as this avoids operation of the

thrusters at low efficiency levels. The choice of thrusters to be on should

not violate thruster array symmetry requirements and should attempt to

maintain the smallest number of switching operations and distribute the load

of burn evenly on all the available thrusters. The criterion for choosing a

burn policy is its reliability. There are several different sources of fail-

ures, as will be discussed later in the section on hardware reliability. The

least-switching and equal-burn policies discussed below are considered to

give the highest reliability under such a reliability model.

Given a thrust program, the required total burn time T B can be

obtained simply by adding the product of the number of thrusters and the

burn time for different phases of the mission (see Fig. 5). If T. is the
1

assigned burn time for the ith thruster, the reliability R of such a burn

policy would be

R = r(T1 ) r(T2 ) · r(TN) (2)

with the constraint

T1 + T2 + · TN = TB

where

r(T) = (PC + thruster) system reliability

N = Number of thrusters used

If the lifetime of the thrusters is very long and r(Ti) are essentially of the

exponential type,

r(T i ) = e (4)

then the reliability of performing the required burn

R = eTB (5)

is independent of the burn policy as long as the existing number of thrusters

meets the minimum requirement. However, in reality, thruster life is of

JPL Technical Memorandum 33-593 5



finite duration and can be considerably shorter than the mission flight time.

Because r(T
i

) - 0 as T. approaches the lifetime, leading to complete failure,
1

an arbitrary burn policy must be avoided. Since failure rates are mono-

tonically increasing functions of elapsed burn time under the assumed reli-

ability model, it can readily be proven that equal distribution of burn time

to the existing thrusters would be the minimum risk policy.

Minimization of R with the constraint of (Eq. (3)) requires that

_(T 1 ) i(T2 ) i(TN)
r(T

1
) r(T

2
) r(TN) minus hazard rates (6)

which can be satisfied if T = T2 TN N. The above argument

disregards the risks associated with thruster restart. In actual operation,

it is perhaps more convenient to operate thrusters continuously as long as

the operating condition is good and the switching of thrusters takes place

only as a result of failures or as the number of thrusters burning is to be

changed. Without sufficient spares, such a policy would have little chance

to succeed in the most desirable mission mode. However, the probabilities

of attaining the mission objectives in alternative modes could be great

enough to be acceptable. This procedure is termed the "least-switching

policy". In this study, the equal-burn policy is emphasized, where the con-

sideration of equal-burn distribution is of primary importance and the least

switching consideration is of secondary importance.

B. Hardware Risk Factors

1. Thruster power rating and number of thrusters. Once a nominal

mission and the reference trajectory are chosen, the required power profile,

which varies as a function of time, is determined. Since the thrust mode

presupposes full utilization of solar panel output power, the thrust subsys-

tem must be designed to operate with such a power history (power matching).

The general practice of power matching is, first, to provide a number N of

thrusters of given power rating (Pr) (power input to power conditioner) such

that (NPr) is at least equal to the maximum power yield of the solar panel

during the entire mission. The variations in the power profile are matched

by adjusting the number of engines in operation and, at the same time, rely-

ing on the ability of the engines to throttle in the range of about 2 to 1.
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The engine power rating affects the mission reliability mainly through

its impact on the possibilities of trajectory reshaping. The intuitive

assumption that many smaller engines are more favorable than fewer larger

ones (in that, following a failure (smaller power loss), the former leaves

more chance of mission completion in alternative modes) is correct. Never-

theless, the thrust-subsystem specific mass increases as the power rating

is decreased. This and the thruster array configuration design constraints

should restrict the allowable value of P to a practical range.

Provision of spare thrusters always increases mission reliability.

The required number of spares to attain a certain reliability depends on all

other risk factors. Assuming, however, that all other risk factors remain

the same, one can conduct risk analysis on all feasible (N-Pr) combinations.

Prior to an actual subsystem design, such information is most desirable, as

it will expedite the selection of a design point which is most cost-effective,

compatible with design constraints, and deliver the needed success confi-

dence level.

2. Power conditioner and thruster switching matrix. The use of

switching mechanisms to allow interconnection of a power conditioner (PC)

to many thrusters may add to system reliability. To include this factor in

the analysis, in addition to the modeling of the switching logic, the switching

mechanism reliability data must be given. Because this was beyond the

scope of the study, the simulation of independent PC failures was not per-

formed. One-to-one PC-thruster connections were assumed; thus the fail-

ure probabilities used represent the PC-plus-thruster unit.

3. Thruster array geometry. Because of spacecraft attitude stabil-

ization requirements, the simultaneous operation of thrusters in some com-

binations is forbidden. The constraints reduce the possible alternatives in

thruster burn in case of failures, and the burn strategy simulation must

exclude such combinations.

4. Thrust subsystem reliability. The key constituents of reliability

in the thrust-subsystem must be identified for a failure analysis. The

mathematical models of failures must be established to allow a quantitative

description of the failure probabilities. Systematic testing programs are

needed to obtain actual failure distributions in the time domain and in the

JPL Technical Memorandum 33-593 7



operating environment extremes. At present, the data available are of a

preliminary and speculative nature. However, these preliminary data can

be used to carry out parametric studies wherein the parameters cover the

entire possible range.

The key failure modes considered are:

(1) Thruster life. Thruster life is limited by grid wear-out or by

depletion of the cathode emissive material.

(2) Thruster or power conditioner component failure. According

to standard reliability engineering procedure, such failures can

be considered to have a Poisson distribution.

(3) Thruster restart failure. The risks involved in restarting a

thruster are modeled by using a binomial distribution.

(4) Delivery or infant failure. Conventional modeling of this type of

failure can be made. However, in this study, it is assumed that

the thrusters would be tested thoroughly and that this type of

failure can be ignored.

Table 1 summarizes explicitly the mathematical models used. (See

Ref. 4 for the standard reliability modeling. ) A typical computer plot of the

reliability curve R(t) is shown in Fig. 3.

IV. RISK PREDICTION METHOD

As introduced earlier in this section, the risk prediction method simu-

lates countable discrete multistage processes and also calculates the corre-

sponding probabilities.

This approach minimizes the labor of numerous trajectory computa-

tions by concentrating on a finite number of trajectory alternatives which

can be used to approximate any of the actual alternative trajectories. The

main purpose of the analysis is to investigate the mission feasibility and the

probability of mission success. It is not mandatory to have very accurate

trajectory profiles to conduct this type of study. In the following, a step-

by-step description of computerized risk prediction and process simulation

procedure is given.
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Step 1. A finite number of trajectory points is systematically chosen

to divide sequentially the entire mission into M different phases. The

division can be based on the time interval during which the desirable number

of thrusters that are turned on is constant. However, the size of a phase

interval should not be too large. These time points constitute the decision

time s.

Step 2. At the beginning of each phase, the admissible failures are

identified and alternative paths constructed. This method proceeds in a

chronological order. As the stages progress, it is necessary to branch into

a number of different paths, thus forming a trajectory tree. A summary of

the resulting trajectory tree can be constructed in a graphical form, where

correspondences between the thrust subsystem status (only the number of

surviving thrusters) and the paths are shown. In general, the correspond-

ence is one path to many thrust subsystem states. Besides, the only infor-

mation important for the probability calculation is the power profile change

along the alternate paths. This information is stored in the computer.

Step 3. Thruster reliability data are calculated by using assumed

models, and the data are stored in a tabular form.

Step 4. The thruster burn is started in accordance with a burn policy

and a nominal thrust program at the beginning of ith mission phase.

Step 5. A failure mode Ii, which may occur during the ith phase if

step 4 were executed, is simulated. If there are N. thrusters available at1
the end of the last phase, it is possible to have

( Ni)

different modes of failures, where C 
N i is a binominal coefficient. The
J

probability of this Iith failure mode is computed using the results of Step 3.

Discard all events having less than 10 probability.

Step 6. If the failure mode I. is not fatal, the thrust mode modification
1

based on Step 2 is applied (i.e., path modification), the engine burn

JPL Technical Memorandum 33-593 9



allocation revised, and the ith phase completed. The probability of the

ith phase completion

in this revised mode is then computed.

No random number generating schemes are used to assign an exact

time of failure. It is assumed that the impact of a failure occurring any time

within the phase is approximately the same as if it were occurring at the

beginning of the phase. Thus, revision of burn allocation always starts at

the beginning of the phase. This gives conservative estimates.

Step 7. Proceed to (i+l)th phase: Steps 4 to 6 are repeated until the

last phase of the mission is completed. The probability of mission comple-

tion with a failure history I (sequential failure modes Ii, I = 1, M constitute

a failure history), is

M

PI n PI.(i)

i=l 1

Step 8. Steps 3 to 7 are repeated for all possible failure histories,

giving a total success probability of

I

The justification and advantage of the above procedure can be argued as

follows:

(1) In the limit, where the number of phases chosen becomes

infinitely large and the interval infinitely small, the method of

prediction is mathematically exact.

(2) By a convenient choice of phases, an approximate trajectory pre-

diction can be made, which in turn greatly reduces the labor of

trajectory reoptimization.
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(3) The inaccuracies in prediction made by the finite interval

procedure can actually be measured only if one experiments

with the size of the interval. This procedure is impractical

from a computational point of view (at least, in the case of the

Encke mission risk analysis used as an example in the next

sections) because the required number of failure history simula-

tions increases almost exponentially as the number of phases is

increased. However, the estimate is on the pessimistic side,

and it is believed that the error cannot be large; it is probably

insignificant compared with whatever errors were being com-

mitted in the modeling of the hardware reliabilities.

V. 1980 ENCKE RENDEZVOUS MISSION RISK ANALYSIS

As an example of this risk assessment procedure and the type of infor-

mation that can be generated by its application, an analysis was made of an

Encke rendezvous mission for the 1980 opportunity.

A mission with the general mission profile shown in Table 2 was

selected for analysis.

A. Hardware Risk Factors

1. Thruster power rating. This study assumes that the maximum

allowable power input to a PC-plus-thruster system is 3. 23 kW with a

throttling ratio of 2 to 1. The 3. 23-kW number is assigned to match the

expected maximum solar array output power of 16. 14 kW during the mission,

using five thrusters. However, this number is compatible with a 30-cm

thruster being considered at JPL.

2. Number of thrusters. Thrust subsystems with 5, 6, and

7 thrusters are analyzed in this study.

3. Symmetry requirements on thruster firing. Consider a

7-thruster system which has the geometrical configuration shown in Fig. 4.

The simultaneous operation of combinations of thrusters which are prohibited

is summarized in Table 3.

4. Hardware failure parameters. No firm data could be obtained

regarding the reliability of the thrust subsystem. However, based on the

JPL Technical Memorandum 33-593 11



content of Ref. 5 (private communication from NASA Lewis Research

Center), the following assumptions were made:

(1) Thruster life in the range of 300 to 450 days was assumed. In

practice, thruster life is measured in terms of ampere-hours.

In modeling the wearout failure, the independent parameter

should be the elapsed burn time in ampere-hour units (defined

as effective elapsed burn-time). At a fractional-power-level

operation, such as in Phase VIII (see below), where a thruster

is to operate at about the 50% level, the effective burn time

should be 44 days instead of 88 days. The conversion of simple

burn-time into effective burn-time was not carried out in this

study.

(2) For thrusters, failure rates of (6 - 10)/106 h are assumed.

For PCs, the failure rates are estimated to be about the same

as for the thrusters. Allowing an error with a factor of 2, fail-

ure rates in the range (6 - 50)/106 h were used for the thrusters

plus PCs.

(3) A somewhat arbitrary number of 10 was assigned for thruster

restart failures.

B. Operational Mode Risk Factors

1. Definition of mission success. Three different classes of suc-

cess are considered in this study:

(1) Class I, the selected mission mode. In this mode, rendezvous

with Encke occurs at the desired rendezvous time of -47 days

to Tp.

(2) Class II, a degraded but acceptable rendezvous mode. Here,

the mission goals are considered attained if the spacecraft can

achieve rendezvous with Encke at any time between -47 to

-27 days to Tp. This also ensures that the heliocentric radius

of the spacecraft is larger than 0. 7 AU at encounter.

(3) Class III, including flybys, if relative velocities are, less than

1 km/sec.
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As explained in Section II, Class II and Class III goals are included to

explore the effects of the trajectory control policy on the predicted risks.

2. Trajectory control policy and trajectory error analysis. At the

onset of the selected mission, the thrust power level profile is expected to

follow the curve given in Fig. 5. Even though this profile may change due

to failures as the mission progresses, this power profile constitutes the

basis for the thrust subsystem design and the power matching burn control

of the first phase of the mission. Note the absence of a coast phase and the

high power levels appearing at the initial and final phases of the mission.

In accordance with Step 1 of the risk prediction method described in the pre-

vious section, the entire mission duration is divided into 15 different mis-

sion phases. This division of mission phases coincides with the times where

the number of burning thrusters changes. The long phase of about 620 days

in the middle where only one thruster needs to be burning is further divided

into seven smaller phases for multistage simulation. The path control policy

used to generate alternative paths, in case of severe failures, for the

Class II goal is to attain a perfect rendezvous condition with minimum ren-

dezvous time slippage from the Class I goal.

For the Class III success category, there are some difficulties in the

calculations due to limitations existing in currently available low-thrust

trajectory software. The results of trajectory error analysis as described

are summarized in the trajectory tree shown in Fig. 6. There are seven

different paths in this figure. These paths are considered to approximate

adequately any of the actual paths the spacecraft will pursue following

admissible failures. The straight lines between neighboring nodes represent

one segment of the spacecraft path. Branching of the path appears as fail-

ures of different degrees occur.

3. Thruster burn control policy. Both the equal-burn policy and

the least-switching policy were considered in this study. To illustrate the

concept, the burn control expected for the selected mission can be planned

as shown in Fig. 7. Also shown in Fig. 5 with the power profile is the mini-

mum number of thrusters required at each phase of the mission, along with

the expected average thruster burn allocation for thrust subsystems with

5-, 6-, or 7-thruster arrays.
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C. Risk Prediction

An example of the computer output simulating a single failure process

(failure history) and the corresponding probabilities as described in Steps 4

to 7 of the risk prediction method is given in Table 4. The assessed mis-

sion success probability is derived from a very large number (up to

106 cases) of such simulations.

D. Results and Conclusions

The predicted success probabilities for the 1980 Encke rendezvous

mission are summarized in Table 5. These are shown as a function of

thrust subsystem failure parameter sets (i.e., thruster life and failure

rate) and mission class. Effects of symmetry requirements and the least-

switching policy were examined for one set of hardware failure parameters.

Conversion of the data of Table 5 into a constant risk-contour map (see

Fig. 8) revealed some useful information regarding the hardware design

requirements. The following conclusions were drawn from the data

obtained.

1. Effects of hardware reliability on the thrust subsystem design.

As assumed previously, if 3. 23 kW were a convenient thruster power level

for design, then the 5-thruster system would obviously not be satisfactory:

it does not guarantee 90% reliability even when using very optimistic

hardware-failure data. For 6-thruster and 7-thruster systems, constant-

risk contours for the Class II mission goal are plotted on a failure parameter

plane (Fig. 8). The shaded domain represents the currently assumed failure

data bounds. If less than 1% risk is desired for a N = 6 or N = 7 system, the

design effort must be made to shift the hardware failure data domain to the

left of the 1% curve. Note the asymptotic behavior of constant-risk curves.

As the thruster-life parameter increases, the constant-risk curve

approaches asymptotically to a constant-failure-rate line. At the other

extreme, the constant-risk curve tends to coincide with a constant-thruster-

life line as the failure rate approaches zero. This implies that, with a

fixed number of thrusters and a given failure rate, improvement in thruster

life beyond a point does not contribute to the reduction of mission risks.

For the same reason, given a fixed thruster life, design efforts beyond a

point to reduce hardware failure rate is ineffective.

JPL Technical Memorandum 33-59314



With the current design baseline, Fig. 8 indicates that thruster life

is not the key risk factor in controlling the Encke mission if a 6- or

7-thruster system is desired. The low-risk contours are approaching the

constant-failure-rate lines at the current thruster life expectancy. To

reduce the mission risk, it is more effective and desirable to control the

failure rate to less than the asymptotic value. For a 7-thruster system,

the desirable 1% risk curve tends to approach the failure rate 15 line

after a thruster life of above 500 days. Thus, unless one is fairly sure of

controlling the failure rate to less than 15 per 106 h, a 7-thruster system

cannot attain a 99% chance of success, even with very long-lasting thrusters.

In this case, an 8-thruster system will be required, or the advantage of

multichannel PC to thruster switching must be investigated. If a thruster

failure rate of 6 and a PC failure rate of 7, as predicted by the hardware

technicians, were reliable, then a 7-thruster system could be considered to

be adequate because, by all indications, thrusters lasting 450- 500 days

are within reach with present technology.

2. Effects of symmetry requirements. In view of the conclusions

reached above, only the 7-thruster system needs to be considered. Even

though the data obtained are not exhaustive, it is expected that, within the

current failure data domain, the symmetry constraint can degrade the mis-

sion reliability by no more than 1%.

3. Effects of trajectory design. The data in Table 5 show signifi-

cantly greater success probabilities for the Class II mission goal as com-

pared to the Class I goal, which means that a mission design which allows

up to a 20-day encounter time delay helps to ease the mission risk consider-

ably. This fact, in turn, eliminates the possibility of over-designing the

thrust subsystem. The risk contour plots for the Class I mission goal shown

in Fig. 9 illustrate this point. The confidence levels exhibited for a

7-thruster system appear similar to that of the 6-thruster system shown in

Fig. 8. Thus, if the possibility of a Class II type of achievement were dis-

regarded and the design point were chosen in the manner discussed in the

previous paragraph, an 8-thruster system would have to be recommended.

This is one thruster more than required. Since the main cause of the risk

lies in the large random failure rates of the components which basically are

difficult to control, it appears that it is much more effective to compensate
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for the hardware unreliability by means of an over-designed trajectory

rather than an over-designed thrust--subsystem. It is, therefore, recom-

mended that future mission designs should consider risk aspects in the

construction of the trajectory rather than adhering to the payload optimiza-

tion procedure.

4. Class III mission goal. Consideration of the Class III mission

goal and the chances of success have not been investigated in as much detail

as the Class II mission goal. The main difficulty in analyzing this class of

mission is in forming the trajectory tree. Because there is no software

which will generate a minimum flyby velocity (Vhp) and the associated tra-

jectory simultaneously, it is necessary to scan over many Vhps until a pos-

sible minimum is reached, which requires many trajectory searches. In

addition to the freedom in the choice of Vhp < 1 km/s, there is another

degree of freedom, the encounter time (T end) in establishing the failure-

mode to alternate thrust-mode correspondence. This added degree of free-

dom in the choice of available trajectories demands another law (criterion)

to single out one point in the acceptable (Vhp - Tend) domain and the corre-

sponding thrust mode. In this particular study, where rendezvous mission

is the main interest, no extra effort was made to solve the problem of the

flyby-class goal in an exact manner. However, a preliminary study of the

possibility of flyby missions (Vhp < 1 km/s) in case of severe failures was

made. An arbitrarily selected, but valid, failure-to-flyby-mode correspond-

ence was set up and the risks evaluated for a 5-thruster system. The

results show that, for median failure parameters, the probability of success

for the Class III mission goal is 94% compared with_87% for the Class II

mission goal. This number indicates that uncertainties (2 - 3% risks) in

the recommended 7-thruster system can be completely erased if the

Class III mission goal is considered acceptable.

5. Effects of burn policy. As expected, the least-switching policy

is inferior when compared to the equal-burn policy in achieving either

Class I or Class II mission goals. This is particularly true for a Class I

mission objective because thruster life is limited and only a limited number

of thrusters are available. As the assumed wearout life becomes long and

the number of available thrusters becomes large, normal failure dominates,

and the risk becomes insensitive to the policy. Such appears to be the case
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for the recommended 7-thruster system in achieving a Class II mission

goal. For currently estimated failure data, the difference in predicted risk

between the least-switching and the equal-burn policies is not expected to be

more than 1 to 2% for the 7-thruster system.

VI. RECOMMENDATIONS

Wider application of this technique to other missions may be attempted

to acquire a deeper understanding of the risk aspects of an SEP mission.

Refinements to the method of risk prediction and the algorithm of failure-

process simulations are most desirable. Further research in this area,

with a better understanding and model of an actual SEP flight operation, may

result in a more accurate semi-analytic approach to the problem, which is

most vital for the support of SEP missions.

REFERENCES

1. Russell, K. J., Seliger, R. L., "Electric Propulsion Design
Optimization Methodology, " Journal of Spacecraft and Rockets,
Vol III, No. 2, Feb. 1970, p. 164.

2. Guttman, C. H. et al., "The Solar Electric Propulsion Stage Concept
For High Energy Missions, " AIAA Paper No. 72-465, American
Institute of Astronautics and Aeronautics, April 1972.

3. Kizner, W., "An N Thruster Reliability Problem for Electric Pro-
pulsion, " JPL Space Programs Summary 37-60, Vol. III, Dec. 1969,
p. 223-226.

4. Myers, R. H., Wong, K. L., Gordy, H. M., Reliability Engineering
for Electronic Systems, John Wiley and Sons, Inc., 1964.

5. Paul Reider, personal communication, Reliability Data and Failure
Modes of 30 cm Thrusters, NASA Lewis Research Center, March 27,
1972.

JPL Technical Memorandum 33-593 17



4-

a)

U) 
01 

P

bI

I

II

8 
_

.4,

N
 

...

N
b

a)

I
I

.
q 

q
4
-'-4

 
-4

 
-

4X

'Z- 
m

o 
I 

5 
C

r H 
.H 

x 
M

0
Q

 
pq 

pq 
w

 
O

hd 
k

'4-, 
0

Z-4) 
o
'

a) 
1

N
b-4

N
a)

N
b

NN
a)II

H

us
4-o a)0oo U0

U) 0d) U

00r.,oa)00.4

0.4a);4a)U
)

-4
H

0

4
d
-

a 
) 

E
 D)

0 
I 

I

x 
d 

a) 
a) 

a

[z

JP
L

 T
ech

n
ica

l 
M

em
o

ra
n

d
u

m
 3

3
-5

9
3

4.-
4,r.-4a)
P:

(n-4o,-4

c U.4U
,

a-4

-oE
W

a)

o
4 a,a aa-44- S4 a4

-4U
)

-4U
)

-'-

a)0f.i

-444

118

I



Table 2. Characteristics of an Encke
rendezvous mission

Event

Launch date

Arrival date

Solar panel size

Housekeeping power

Specific impulse

Injected mass

Injection C 3

Nominal final mass

Propellant mass

Characteristic s

March 16, 1978

October 21, 1980
(-47 days to Tp*)

P = 16.6 kW
o

PA = 0.6 kW

Isp = 3000 sec

M = 1630 kg

C3 = 54.2 (km/sec)2

Mf = 1163 kg

MP = 457 kg

TP = Time of Encke perihelion

Table 3. Forbidden thruster combinations

Number of
Thrusters

to be Fired Forbidden Combinations

5 None

4 2347, 3457, 4567, 1567, 1267, 1237,
2467, 1357

3 237, 347, 457, 567, 167, 127, 247,
357, 467, 157, 267, 137, 234, 345,
456, 156, 123, 346, 135

2 25, 36, 47*

1 None

Allowed combinations

For six-thruster system, thruster © is
removed.

For five-thruster system, ® and ( is
removed.

Forbidden combinations for six-thruster system
and five-thruster system can be inferred from
the above table.
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SUCCESSFUL PATH

- - - FAILURE

pi0) = TRANSITION PROBABILITY FROM i t

h TO i+l t STAGE,
ALONG SUCCESSFUL PATH j

PROBABILITY OF SUCCESS = 7rT pij)
I

Fig. 1. Probability tree for mission operational process

MODEL FAILURE PROBABILITY I SIMULATE FAILURES, ALTERNATE PATH
CONTROLS AND BURN CONTROLS

MISSION SUCCESS PROBABILITY

Fig. 2. Risk factors and risk assessment
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